大朝山水电站坝基渗流监测及初步数据分析

大朝山水电站坝基渗流监测及初步数据分析

一、大朝山水电站大坝坝基渗流监测及初期资料分析(论文文献综述)

字林,洪建辉,李浪[1](2021)在《黄登水电站坝基渗流特性研究及实践》文中研究表明黄登水电站为200m级高碾压混凝土重力坝,如何减少坝基渗漏量,降低坝基的扬压力,增强坝基的抗滑稳定性,是大坝设计的关键技术问题之一。采用三维有限单元法,对坝基渗流场进行分析计算,模拟渗控措施,研究了坝基的主要渗流特性和渗控措施的作用。分析结果验证了渗控设计方案的重要性,并依此进行了黄登水电站坝基防渗帷幕、排水设计方案的设计,监测结果表明该设计方案能满足大坝渗控需求。

高珊[2](2021)在《混凝土面板堆石坝面板裂缝统计分析及渗流数值模拟研究》文中认为混凝土面板堆石坝具有建筑工程造价少、工程量相对较小、对地质条件适应好、施工比较方便、坝体稳定性较好等特点而被广泛应用于水电工程中。面板和防渗帷幕是面板堆石坝重要的防渗结构,只有整个防渗体系发挥作用时,才能保证坝体的渗流稳定性。但面板堆石坝在快速发展过程中存在许多实际问题,主要集中在面板由于温度应力、干缩应力、坝体变形等原因引起的大量裂缝,以及防渗帷幕劣化,导致坝体和坝基发生渗漏,威胁大坝的安全。因此,研究面板堆石坝的面板裂缝以及在异常工况下的渗流特性对确保坝体稳定与安全有重要意义。本文采用了统计分析的方法以及数值计算对面板堆石坝面板裂缝及异常工况下的渗流特性开展了系统的研究。主要研究内容如下:(1)本文对国内外的面板堆石坝面板开裂的案例进行统计,对面板开裂原因、开裂阶段和开裂位置进行了分析。当大坝的防渗结构出现异常时,就要及时采取相应措施进行渗流控制。(2)结合面板堆石坝面板裂缝的统计案例,建立了面板裂缝等效连续介质方法。将有限元分析方法与小尺寸分区块等效方法相结合,计算坝区三维渗流场,再通过对坝区渗流量的对比,确定区块的大小。采用小尺寸区块等效方法研究混凝面板中大量分布且不均匀的裂缝的渗流场,获得相应的水头分布和渗流特征,包括浸润线,最大水力梯度和渗流量。通过对比分析面板整体等效方法和面板小尺寸分区块等效方法,验证了小尺寸区块等效连续方法的准确性和可靠性。(3)基于等效连续介质方法对面板堆石坝渗流及影响因素进行分析。对实际工程进行了三维渗流有限元数值模拟,定量和系统地分析和对比了在面板不同位置开裂和防渗帷幕不同程度劣化工况下的渗流场和渗流特征。

张瑜潇[3](2021)在《基于POT和改进D-S证据理论的土石坝健康诊断方法研究》文中研究说明在我国近10万座已建水库大坝中,大量工程处于不同程度的病险工作状态,其中土石坝所占比例最大。采用健康诊断方法定量评估土石坝健康状况,能够对影响土石坝安全的各种不确定性因素进行有效准确的辨识,及时诊断土石坝的病险程度,确保大坝长效安全运行。土石坝健康诊断信息类型多样、诊断过程复杂,健康诊断方法是实现土石坝健康诊断信息融合与安全性态分析的关键问题。因此,本文综合利用数值计算、安全监测、检查巡查、试验检测等多类健康诊断信息,构建基于模糊最优最劣法(the Fuzzy Best-Worst Method,FBWM)和熵权法(Entropy Weight Method,EWM)的土石坝健康影响因素重要性分析模型,建立基于超阈值(Peaks over Threshold,POT)模型的土石坝健康诊断指标拟定方法,在此基础上,提出改进的Dempster-Shafer证据理论(D-S证据理论)及基于该理论的土石坝健康综合诊断方法,为土石坝专项及综合健康诊断提供科学的定量评估方法。具体的研究内容如下:(1)基于土石坝的运行环境与结构特点,依据土石坝溃坝及风险分析理论,对土石坝健康影响因素进行挖掘,总结了土石坝健康的影响因素集,并构建了定性、定量相结合的土石坝健康诊断体系,为后续土石坝健康诊断过程提供了结构基础。(2)运用模糊最优最劣法和熵权法分别确定健康诊断体系中各影响因素的主、客观权重,利用级差最大化法(Level Difference Maximization,LDM)优化求解最佳组合权重,建立了FBWM-EWM-LDM组合赋权模型,定量评估土石坝健康影响因素的重要性,为土石坝健康影响因素重要性研究提供了科学有效的新方法。(3)综合水利规范要求以及水利土木领域健康状态评定标准研究成果,提出了土石坝健康评价等级的五级划分原则。并针对诊断体系中的非监测资料和监测资料信息,分别采取等区间划分法和POT模型构建土石坝健康诊断指标的综合拟定方法,建立五级健康评语量化区间的划分标准,为土石坝健康诊断提供合理准确的评价依据。(4)针对土石坝健康诊断存在的模糊性及随机性问题,利用可拓云理论的定性定量转化能力对D-S证据理论进行改进,同时对信息融合准则进行改进,将影响因素重要性与诊断信息支持度作为合成规则,提出了基于改进D-S证据理论的土石坝健康诊断方法,解决了模糊、随机的多证据体融合问题,提高了土石坝健康诊断的准确性。

黄振东[4](2020)在《遗传算法在土石坝渗流监控模型应用研究》文中研究说明我国拥有世界上数量最多的土石坝,由于渗流对土石坝有重要的影响,研究、监控渗流对保障土石坝的安全至关重要,渗流监控模型的建立具有重要意义,但是渗流监控模型的拟合预测效果不佳的情况,仍有较大的提升空间。本文在参考国内外大量参考文献的基础上,科学合理的分析土石坝的各环境量和效应量之间的关系,建立各种监控模型对效应量进行拟合和预测,并利用遗传算法的优化功能,提升渗流监控模型的拟合预测效果。本文结合横向项目:“水库大坝渗流分析及对策研究”,开展了遗传算法在土石坝渗流监控模型应用研究,从土石坝的测压管水位和渗流量两个方面建立相应的监控模型,并利用遗传算法对渗流监控模型进行优化。主要研究内容和成果如下:1.本文结合该横向项目的土石坝原型观测资料对测压管水位和渗流量分别建立相应的统计模型和BP神经网络模型,并利用遗传算法优化并建立遗传统计模型和GA-BP神经网络模型。经过模型预测能力检验指标证实,经过遗传算法优化后的监控模型有更高的的模型精度和预测效果。另外,基于遗传算法优化后的监控模型,利用置信区间法建立的测压管水位和渗流量的监控指标,可直接用于工程监控,具有较强的实用意义。2.在利用遗传算法对统计模型和BP神经网络模型进行优化后发现,遗传算法均使模型在模型精度、预测能力上有一定的提升,但是提升的空间有限。所优化的模型如果自身的模型精度、预测能力不佳,遗传算法很难在根本上改变这个情况。因此,要获得最优的监控模型,除了利用遗传算法优化监控模型外,更重要的是选择模型拟合能力强的监控模型,比如BP神经网络模型。

钟正恒[5](2020)在《如美水电站坝基岩体渗流及防渗范围分析研究》文中进行了进一步梳理拟建如美水电站位于西藏昌都地区芒康县境内的澜沧江以下河段流域上,是昌都以下河段流域规划的第五个梯级电站,挡水建筑物拟采用心墙堆石坝,最大坝高315m,水库正常蓄水位2895m,水电站控制流域面积7.94万km2,多年平均流量为648m3/s,相应正常蓄水位以下库容37.43亿m3,装机容量2100MW。前期现场调查表明:如美水电站区域地质构造背景复杂,枢纽区内地质构造发育,两岸斜坡风化卸荷特征差异明显,发育有多条断层和挤压带,各级结构面组数较多且发育密集。尤其斜坡浅表部卸荷带岩体、长大裂隙以及侵入岩脉发育,与周围围岩裂隙形成的裂隙网络结构复杂,构成了地下水运移的直接通道,对坝基防渗治理和工程安全运行带来一定困难。本文从坝址区工程地质环境条件出发,系统研究了两岸坝基岩体裂隙的发育程度及规模,对岩体结构及岩体渗透结构进行了深入的分析,并通过坝基岩体渗透特性的研究获得了不同结构类型岩体的渗透系数;最后利用Visual Modflow软件对中坝址区蓄水前后的渗流场进行分析和对比,讨论了防渗帷幕深度对渗漏量的影响,并对防渗帷幕处理的范围进行了工程地质类比研究。取得的主要成果如下:(1)总结分析了左、右岸坝基岩体结构面的发育特征,对不同类型结构面产状、发育规模及充填特征等进行了统计分析,得出左岸共揭露有Ⅲ级断层20条,产状为N5~25°E/NW(SE)∠75~88°的断层发育具有绝对优势,延伸长达100~400m,其中重点概括了断层L72的空间发育特征;右岸Ⅲ级断层多呈陡倾发育,破碎带宽度在10~40cm。Ⅳ级断层在左右岸多以陡倾角为主,且成组发育;Ⅴ级结构面主要为基岩裂隙,裂隙面多闭合,且裂隙发育程度与岩体卸荷有关,不同规模裂隙在空间中的展布和组合,构成了坝基岩体渗流的基本地质模型。同时两岸坝基岩体结构类型随卸荷分带变化,斜坡由表及里随卸荷程度降低岩体完整性有所提高。(2)归纳了多数工程岩体当中常见的5类基本渗透结构及其复合类型,对如美坝址区不同卸荷带岩体的渗透结构进行划分,得出坝址区岩体渗透结构主要以带状、裂隙网络状渗透结构为主。带状渗透结构主要由强卸荷带岩体、规模较大的断层、岩脉及其周围裂隙密集带组成,为渗流的主要通道。裂隙网络状渗透结构主要由弱卸荷和未卸荷基岩中的裂隙切割构成,为渗流的次级通道。(3)通过压水成果试验分析和裂隙岩体渗透张量计算,得出坝基岩体渗透性总体随垂向埋深和水平硐深的增加而逐渐减小,岩体渗透性主要随风化、卸荷分带变化,不同开度岩体的渗透系数往往不同。为验证计算参数的合理性,收集了多个水电工程卸荷分带岩体的渗透系数及试验数据,讨论了岩体卸荷程度与渗透性大小的关系,结合参数类比综合选取了坝址区各卸荷分带岩体的渗透系数。(4)利用Visual Modflow三维地下水有限差分软件,对中坝址区不同工况下地下水渗流场进行模拟计算,结果表明:天然状态下,中坝址区浅部地下水由两岸向澜沧江排泄,深部岩体地下水自右岸向左岸径流。当水库正常蓄水以后,由于坝前后水头差的存在,水头等值线向坝后发生折变,库区上游水流绕过两岸岩体向下游渗漏,在两岸坝肩位置形成了绕坝渗流。其中,坝基强卸荷及弱卸荷岩体均形成了一定范围的绕坝渗流,且随卸荷程度的降低,绕渗范围有所扩大。蓄水后两岸观测孔地下水位均有明显抬升,右岸水位逐渐上升,左岸水位先上升而后逐渐递减。(5)蓄水产生的坝基及坝肩渗漏问题突出,通过模拟软件中的水均衡模块对坝基及坝肩渗漏量进行预测,显示蓄水后坝基及坝肩的渗漏量为10307.968m3/d;设置120m防渗帷幕后渗漏总量为7495.363m3/d;设置150m防渗帷幕渗漏总量为6384.9199m3/d;设置200m防渗帷幕渗漏总量为5690.7113m3/d。防渗帷幕对坝基渗漏量有较好的抑制作用,帷幕深度为150~200m时防渗效果较好。(6)综合上述坝址区裂隙发育特征、岩体结构及渗透结构特征、坝基渗透特性以及渗流场分析,参考国内外大型土石坝工程防渗设计规范及处理经验,对如美坝址区防渗标准进行区段划分,拟定了帷幕在河床坝基及两岸坝肩的延伸范围。其中河床坝基段以q≤1Lu作为相对不透水层,建议该段坝基帷幕深度(与建基面最小距离)取200m。左、右岸中上高程坝基以q≤3Lu作为相对不透水层,并按照50m左右高差设置一层灌浆平硐,左、右岸坝基分别设置5层灌浆平硐用于防渗帷幕灌浆及相关水文试验。(7)对于坝址区浅表强卸荷带岩体及煌斑岩脉等带状渗透结构,建议全部挖除,结合置换和加固措施进行防渗处理;而深部起主导作用的断层和长大裂隙,应保证帷幕灌浆方向与主导裂隙方向正交,从最大程度上封堵渗漏通道,从而降低坝基岩体渗漏量,保证坝基渗透稳定。

戴宏基[6](2020)在《托口水电站河湾地块渗流分析与渗控效果评价》文中指出大型水利工程建设中,往往面临十分复杂的地质条件,造成复杂的渗漏问题,尤其是水库蓄水后,地下水位显着抬升,水文地质条件将发生明显改变。本文以沅水干流上的托口水电站为依托,采用稳定渗流分析方法,对蓄水后河湾地块渗流参数进行反演计算,以此为基础,对河湾地块主坝侧渗漏问题进行详细分析计算,并对河湾地块防渗工程渗控效果进行评价。主要研究工作与成果如下:(1)根据钻孔压水、抽水及渗透变形试验资料,分析河湾地块工程地质及水文地质条件,对河湾地块岩体进行了合理的渗透性分区,确定相应的渗透参数取值范围。研究表明,河湾地块岩体渗透性可划分为强透水、中等透水、弱透水及微透水四个分区,整体以弱透水和中等透水为主,透水性较大岩体基本分布于灌浆帷幕底线以上。(2)建立了反映河湾地块地形地貌、地层岩体和地质构造特征以及防渗结构特征的整体三维有限元模型。以观测孔水位监测资料、廊道渗漏量、岩体渗透分区以及渗透系数取值范围为基础,采用正交设计与正反分析等相结合的反演分析方法,对河湾地块运行期水文地质条件开展反演分析,确定了较为合适的水位边界条件,并复核岩体渗透分区和渗透系数取值的合理性。反演分析成果表明,观测孔位置处水头计算值与实测值吻合较好,各反演工况下廊道渗漏量计算值与实测值吻合也较好,水头平均绝对误差为1~3m,反演成果较为可靠。(3)在河湾地块渗流参数反演分析成果基础上,采用稳定渗流分析方法开展了河湾地块三维渗流有限元分析,并深入研究了河湾地块主坝侧渗漏问题。研究表明,河湾地块山体内部地下水位在廊道上方呈降落漏斗状,河湾地块主坝侧渗漏偏大,其渗漏主要来源是内部山体通过部分渗透性大、导水性强的岩体或断层与库区连通,导致内部山体地下水位偏高,造成廊道被渗水淹没的现象;河湾地块主坝侧在灌300~灌500、灌600~灌700以及灌800~灌881区域渗透性较强;主坝侧廊道在241m、248.7m库水位条件下渗漏量分别为1580.57 m3/d、3432.24m3/d,库水位对主坝侧廊道渗漏量影响较为显着。(4)基于河湾地块防渗段帷幕布置方案,复核了河湾地块主坝侧防渗方案合理性,结合河湾地块三维渗流分析成果综合评价了河湾地块防渗工程的渗控效果。河湾地块防渗方案整体上是较为合理的,除廊道衬砌坡降较大外,其余部位渗透坡降相对较小,总体上满足渗透稳定性要求。(5)针对现有河湾地块主坝侧廊道淹没现象,提出相应的渗水抽排、防渗及监测措施建议,并全面分析了渗水抽排期间灌浆廊道衬砌的结构稳定性。分析成果表明,渗水抽排期间衬砌压应力、拉应力均在允许范围内,廊道结构基本处于稳定状态;建议在低库水位情况下进行廊道渗水抽排工作,若在高库水位条件下进行抽排工作则需要注意廊道及周围岩体的渗透稳定问题。

刘武[7](2019)在《龙滩碾压混凝土重力坝施工进度管理的研究》文中研究指明碾压混凝土筑坝出现于20世纪70年代,是一种使用干硬性混凝土,采用近似土石坝铺筑方式,用强力振动碾进行压实的混凝土筑坝技术。相对混凝土坝柱状浇筑法具有节约水泥、施工方便、造价低等优点。至20世纪末,世界上已建在建碾压混凝土坝约209座,其中中国43座、日本36座、美国29座。21世纪初,中国龙滩碾压混凝土重力坝正式开工建设,是世界上首座200m级碾压混凝土大坝,坝高世界第一,大坝混凝土方量世界第一,大坝混凝土580万立方米(其中碾压混凝土385万立方米),项目设计技术、施工技术及项目管理都是探索性的,施工进度管理实践也是探索性的。特大型水电工程项目建造施工过程往往跨10年左右,其总体进度计划编制需运用滚动计划与控制方法,远粗近细,滚动编制,动态管理。国内特大型水电工程项目进度计划编制方式主要有横道图、网络计划技术。P3(Primavera Project Planner)是一种融合了关键路线法CPM(Critical Path Method)及计划评审技术法PERT(Program Evalution and Review Technique)等网络计划技术的专业进度管理软件。根据总体进度计划及各层级分解计划编制与控制需要,龙滩碾压混凝土重力坝土建及金结安装主体工程工作分解结构WBS(Work Breakdown Structure),可逐层级依序分解为:主体工程→单位工程→分部工程→分项工程→单元工程。龙滩碾压混凝土重力坝工程总体进度计划编制,结合关键线路法CPM及计划评审技术(PERT)等网络计划技术思路,大致分四步两次循环优化(分→总→再分→再总…),形成总体进度P3横道网络图。根据龙滩碾压混凝土重力坝工程标段总体进度计划控制需要,承包商建立了严密的总体进度计划控制体系。即按时间分解成年度、季度、月度进度计划,按项目分解成单项进度计划、专项进度计划,并按照滚动计划方法进行动态管理,最后落实到周调度执行计划的总体进度计划控制体系。本文对承包商7年的龙滩碾压混凝土重力坝工程施工进度管理过程中逐步形成的、行之有效的实际操作性探索工作进行了理论分析:(1)分目的、分对象综合运用好P3网络计划技术、横道图技术、CAD技术、GIS可视化动态仿真技术。(2)施工技术方案创新、施工管理创新达到了优化网络计划逻辑关系、缩短关键线路关键作业时间、现场持续高效作业等效果。(3)用系统工程理论思路,提前分析预测总施工进度各阶段所需人、设备、材料等施工资源数量,对大型成套施工设备等施工资源采用内部模拟市场化运作高效配置。(4)项目组织机构分阶段重构,以适应项目前期、高峰期、尾工期各阶段进度管理重心动态变化的需要。中国特色的项目管理,之所以能建造好中国国内特大型水电项目,是因为既有传承也有创新,既大胆引进借鉴国外优秀管理手段与理念,运用好了先进的网络计划技术平台与市场配置资源的机制,也运用好了中国央企能集中资源办大事,发挥集团化作战的体制优势。

李正兵[8](2018)在《高拱坝坝基软弱破碎带处置技术研究 ——以锦屏一级水电站坝基f5断层处置为例》文中指出我国西部地区蕴藏了极为丰富的水能资源,开展了大规模的水利水电工程建设,高坝大库不断涌现。混凝土高拱坝已经成为我国西南、西北山区大型水库和电站枢纽的主要坝型之一。混凝土高拱坝对地形和地质条件的要求较高,坝基及坝肩抗力岩体的稳定性是拱坝建设的关键技术问题之一。然而受地质构造影响,拱坝坝基不可避免地存在各种地质缺陷,可能引起坝体破坏,进而危及水电站的运营,高坝坝基及坝肩岩体破坏引起的灾难性事故在国内外均有发生。因此,根据坝基地质特征及地质缺陷的实际状况,采取科学可靠、经济合理的处置措施,是水电站建设中的核心问题。特高拱坝坝基处理与加固,尚无可靠的规范作为依据和成功的工程范例作为参考,本文以锦屏一级水电站300m级特高拱坝左岸坝基软弱岩体加固工程为依托,以坝基软弱破碎带(f5断层)为研究对象,在对其工程地质特征深入调查分析基础上,剖析其所处不同部位对坝基安全稳定的影响,分别对主要的处置技术(灌浆、冲洗置换、锚固)进行了室内外试验和数值模拟研究,揭示其内在机理,并论述了处置方案的合理性与可行性,并借以现场监测数据对破碎带处置工程效果进行了反馈分析与评价。主要研究工作及取得的成果如下:(1)建立了针对300m级高拱坝坝基典型地质缺陷—f5断层的综合处置技术方案体系。从区域构造及坝址区的工程地质条件等角度系统地分析了断层破碎带、层间挤压错动带、煌斑岩脉、深部裂缝以及Ⅳ2级岩体和Ⅲ2级岩体的空间分布规律和物质组成特征,并评价了建基面的岩体质量。详细调查分析了f5断层破碎带的工程地质特征特性(围岩物质特征、破碎带构造特征、力学性质及参数取值等)及其对高拱坝带来的危害影响,并据此初步提出了f5断层的综合处置技术方案体系,即:“置换(高压冲洗置换)处置+个性化灌浆处理(控制灌浆+高压帷幕防渗及固结灌浆+水泥-化学复合灌浆)+预应力锚固+渗压排水控制”技术体系——各有侧重、互为补充、紧密联系的综合处置成套技术。该处置措施对于f5断层破碎带在坝基不同部位所产生的不利影响,有针对性地进行了加固处理,可有效提高断层破碎带及其影响带抗滑与抗变形能力,提高其渗透稳定性。(2)开发了适应地层性状和可灌性要求的系列灌浆材料,解决了断层破碎带低渗透岩带可灌难题和宽大裂隙带控制性灌浆问题。通过室内试验研究了水泥灌浆材料的流变特性、可灌性、析水率和稳定性,研究表明浆液分属于三种不同流型,并发现了水灰比对纯水泥浆流型的影响,从而验证了水泥浆水灰比在牛顿液体、宾汉流体或幂律流体间的分界点。通过最小可灌裂隙宽度与水灰比对比试验,揭示了水灰比0.5的浆液仅能灌入0.4mm的裂缝;水灰比0.8的浆液可灌入0.1mm的裂缝,但灌浆速率较慢;当水灰比大于1.0时浆液可完全灌入0.1mm的微裂缝,且具有一定的灌浆速率。采用牛顿流体本构,以微元受力平衡为基础建立流体扩散微分方程,并结合杨氏浸润理论,增加灌浆时间的方法来提高灌浆扩散半径更加经济合理,其工程技术意义为低渗透浸润化灌理论中“长时间、低速率、浸润渗灌”灌浆的理论依据。通过不同配比化学灌浆材料的试验研究,获得了浆液粘度随时间历时变化的规律,进而解决了断层破碎带低渗透岩带的可灌问题。考虑断层破碎带的物理力学特征,确定了四类断层破碎带条件下(软弱低渗透断层破碎带、断层带影响区域微细裂隙、补强灌浆区域和断层影响带宽大裂隙等区域)的灌浆材料及相应的配比。根据f5断层各部位岩体特征及拱坝受力状况,提出了相应部位的灌浆处置设计方案,即:混凝土网格置换+加密固结灌浆(1730m高程以下):在1730m和1670m高程布置2条高度为10m的置换平洞对f5断层进行加密固结灌浆,置换平洞和斜井的宽度均根据f5断层实际宽度确定。防渗帷幕水泥灌浆:轴线布置3排防渗帷幕灌浆孔,排距1.3m,孔距1.0m;防渗帷幕水泥-化学复合灌浆处理:普通水泥材料灌注完成后,再采用两排化学-水泥复合灌浆。并对各类灌浆提出了灌后检查的指标要求。(3)开发了宽大破碎带高压对穿冲洗置换处理技术(高压往复式冲穿冲洗+群孔扩孔冲洗+混凝土置换回填技术),为软弱破碎带加固治理提供了新颖的处理思路和方法。采用有限元分析软件ANSYS中的非线性动力分析模块LS-DYNA系统地研究了气液射流高压对穿冲洗碎岩效果,提出了高压对穿冲洗扩散计算模型。研究表明高压对穿冲洗回填砼方案处理软弱破碎岩体的技术措施能够达到预期目的。高压对穿冲洗开始时,在孔壁与射流的接触部位会产生应力集中现象,使得接触部位的岩体发生向临空方向的变形破坏,破坏脱离后的块体在气液射流的高压作用下产生向下运动。随着时间的推移,气液射流的应力波由接触部位开始向外部的岩体扩展延伸,并且对外部的岩体逐渐产生损伤破坏。经过气液射流的高压对穿冲洗作用后320mm的孔径扩大到1100mm,从而提出了高压对穿冲洗有效作用范围:孔径为320mm,3540MPa高压水和1.01.5MPa高压风作用下,在距孔壁小于0.4m岩体的冲洗、碎岩作用明显,高压对穿冲洗作用后320mm的孔径扩大到1100mm,出渣量为43.4m3。优选的高压对穿冲洗回填砼方案处理软弱破碎岩体的技术措施是科学、经济、安全和有效的,能够达到预期目的。高压对穿冲洗置换技术改善了断层岩体的物理力学性能指标,加固效果显着,解决了宽大断层破碎带在特定环境中难以处理的技术难题,为断层破碎带加固处理提供了新颖的思路和具体处理方法。(4)利用相似理论研制了受f5断层带影响的卸荷岩体的相似材料,设计了压力分散型锚索加固卸荷岩体的物理模型试验。试验分析表明压力分散型锚索较长锚索松弛而较短锚索过载的现象;岩体非线性变形特征明显,结合Mindlin应力解与卸荷岩体非线性本构推导了岩体的位移计算公式;锚索周围较远的岩体锚固内应力较小,岩体的非线性变形特征不明显;邻近锚索对岩体的附加应力较小,可采根据变形叠加原理计算邻近锚索引起的附加位移,并推导了附加位移引起的锚索应力损失计算式。采用FLAC3D对压力分散型锚索进行了单锚、双锚的数值模拟研究,模拟结果与物理模拟试验较吻合,其揭示的群锚效应规律为:锚索间距为5.0m时,主应力方向锚索的应力影响范围比较小,而且相邻锚索间应力明显无叠加。对压力分散型锚索锚结合被覆式面板(或框格梁混凝土)的群锚支护系统进行了数值模拟,结果表明该支护方法科学合理,对复杂岩体结构适应性强,有利于充分发挥预锚的锚固效应。(5)通过对f5断层灌后检查分析,浆液充分填充至裂隙及断层中,灌浆效果明显,固结灌浆透水率较灌前大幅降低,大于3Lu的孔段全部消除,水泥浆液对f5断层带填充效果明显。物探检查结果表明:各类岩级的声波值均不同程度得到了提升,各单元的变模值与灌前相比均有大幅度提升随灌浆进行单位平均注入量随灌浆孔序递增显着降低,地层渗透性改善明显;化学灌浆对普通水泥浆液不能到达的细微裂隙和特殊地质区域起补强加固作用;高压对穿冲洗置换回填后,透水率降低明显,声波及变模显着提高,满足设计指标要求。通过监测资料系统分析,高拱坝左岸坝基f5断层及其影响带,经采用综合处置措施后能够满足高拱坝安全运行要求。锦屏高拱坝左岸坝基f5断层及其影响带经过加固处理后,历经四个阶段的蓄水检验,左岸坝肩边坡位移增量无明显变化,目前总体变化量值不大(不超过5mm);左岸边坡浅部多点位移计(累计值不超过30mm)、锚索锚固力损失率(约为±15%)、各平洞内石墨杆收敛计位移变化量围岩无明显变形现象,岩体总体稳定;坝基帷幕后渗压计折减系数小于设计控制值,水位变化与上游水位有一定的正相关性,符合坝基扬压力分布一般规律;蓄水前后渗流变化符合一般变化规律;水位控制在1880.0m高程附近后,各部位的渗流渗压变化趋于平稳。从目前监测情况看,渗控工程总体在设计范围内工作。各类监测成果汇总分析表明,f5断层及其影响带加固处理后,高拱坝相应部位处于安全稳定运行状态。高拱坝左岸坝基f5断层及其影响带,通过采用加密固结灌浆处理、帷幕防渗处理、水泥-化学复合灌浆处理、高压水冲穿冲洗回填混凝土及预应力锚固等技术措施,高拱坝蓄水经过四年多的监测与分析及评价,各项监测指标稳定受控,能够满足高拱坝安全运行要求。这充分表明上述处置措施科学合理、安全有效。

马克,金峰,唐春安,吕鹏飞,庄端阳[9](2017)在《基于微震监测的大岗山高拱坝坝踵蓄水初期变形机制研究》文中指出混凝土高拱坝坝踵是蓄水初期阶段拱坝安全的重点关注部位。通过构建国内首套高拱坝坝踵微震监测系统,实现对蓄水初期阶段大岗山拱坝坝踵区微破裂的实时监测,探究坝踵蓄水初期变形机制及其与微震活动性的关系。采用人工敲击试验确定坝踵等效P波波速为4 300 m/s,系统定位误差小于8 m。对系统获取的事件波形进行噪声滤除,并在自动定位基础上进行人工二次校核,提高定位精度,验证了微震监测技术应用于大体积混凝土工程的可行性。分析认为:蓄水初期阶段,大岗山高拱坝坝踵区微震活动性与库水位密切相关,微震事件聚集区实现从坝踵向坝趾的转移,坝踵压缩变形减小,而坝趾区变形量增加。此外,通过拱坝坝踵区微震变形演化过程,揭示了导流洞下闸蓄水前940 m高程基础廊道拱顶裂缝产生的根本诱因。研究成果可为混凝土高拱坝微震监测和真实工作性态研究提供参考。

王自高[10](2015)在《西南地区深切河谷大型堆积体工程地质研究》文中研究说明第四纪大型松散堆积体是一种成因多样、组分复杂、结构无序、土石混杂堆积的特殊地质体,与岩(土)体相比,构成堆积体的物质成分变异性很大,且空间结构较为复杂,其衍生地质灾害具有多发性、复发性和随机性特点,受到了地质学界的广泛关注,已成为新的重要研究对象。西南地区地质环境条件复杂,山区河谷地带地质灾害发育,大型堆积体分布广泛,随着社会经济发展,人类工程活动(包括水利水电资源开发、矿山开采、交通建设等)越来越强烈,其强度已超过国内、外其他地区,与堆积体相关的工程地质问题越来越突出,对工程建设的影响越来越明显,是工程开发建设中必须解决好的重要问题之一。因此,对西南地区河谷大型堆积体工程地质特性、稳定性及其成灾特点与防治措施进行系统研究,不仅具有探索性,而且具有重要的现实意义。为研究、探索西南山区复杂地质环境条件下深切河谷大型堆积体工程地质特征、地质灾害问题及其预防治理措施,作者先后参与了20几个涉及大型堆积体问题的水利水电工程地质勘察及堆积体稳定性专题研究工作,参与了野外地质调查、现场试验、成果审核、处理方案评审及堆积体地质灾害应急抢险工作。同时,结合研究课题,开展了以下几个方面的研究:(1)大型堆积体分类研究。结合西南地区地质环境条件及大型堆积体工程地质特征对堆积体进行系统分类。(2)大型堆积体成因机制分析。结合西南地区河谷堆积体发育分布特征,对堆积体的成因机制及时空演化特征进行分析和总结。(3)大型堆积体工程地质综合勘察技术研究。结合大量工程实践,对大型堆积体工程地质勘察技术、实验手段与方法、以及经验教训等进行总结与分析。(4)大型堆积体工程地质特性研究。包括堆积体界面形态、物质构成、结构特征、物理力学性质及强度特征等。(5)大型堆积体变形破坏特征研究。包括堆积体变形破坏特征、失稳模式及堆积体变形的时空效应等。(6)大型堆积体稳定性分析研究。包括堆积体稳定性特征、堆积体工程边坡稳定、库岸再造稳定、地基稳定分析评价及堆积体地质灾害防治措施探讨等。研究紧密结合西南地质环境特征及深切河谷地区水电工程建设实际,以堆积体工程地质分类为基础,以工程地质勘察及试验研究为手段,以大型工程地质特性研究为核心,以大型堆积体稳定问题分析为主线,依托已建、在建或正在进行前期勘测设计的大型水电工程,对20几个典型的大型堆积体工程实践经验进行总结与分析,来研究大型堆积体在工程建设活动(如工程开挖、地基处理、水库蓄水等)条件下的变形稳定性、地质灾害成灾特点及及地质灾害综合防治措施。通过对30余项西南河谷地带大型堆积体专题研究资料、150余项技术文献资料和相关规程规范及学术交流资料的广泛收集、整理和分析,在堆积体工程地质分类、空间分布特征、形成原因分析、勘察技术方法、工程地质特性、变形破坏特征及稳定性分析评价等方面进行了较为全面的分析和研究,结合近年来西南地区水电工程(包括边坡工程、地基工程及水库工程)典型堆积体地质灾害成灾特点、处理措施及实施效果的评价和总结,提出了大型堆积体地质灾害综合防治措施建议。通过以上的研究、分析和总结,取得了具有一定理论创新,并能指导大型堆积体工程勘察与试验、变形稳定性分析及进行有效工程处理的经验方法和成果,具体包括以下几方面:(1)根据西南地区地质环境条件及堆积体地质特征,按堆积体要素进行分类的基础上,提出了按粒度组成、结构特征及空间形态特征等进行的工程地质分类,并从工程实际需要出发,按照“简明实用、从宏观到微观”的原则,首次提出了河谷型大型堆积体三级分类及基于稳定性评价为基础的工程地质综合分类方案。(2)结合对西南地区河谷堆积体空间发育分布规律及动力地质作用的分析与总结,首次提出了西南地区深切河谷大型堆积体灾变成因、多期成因及混合成因机理与时空演化特征。(3)基于对大型堆积体工程地质勘察与试验的实例总结与分析,提出了水电工程不同设计阶段及不同成因大型堆积体勘察技术要求,以及“3S”等新技术为指导,地质测绘为基础,工程物探为辅助,工程勘探为重点,试验研究为支撑、各种手段相互验证”的综合勘察技术方法。(4)对不同成因大型堆积体的物质组成与结构特征及渗透特性进行了综合分析,总结了堆积体物质成分多样性、结构特征不均一性、力学性质差异性及材料介质非连续性等土石混合堆积物特点,提出了堆积体物理力参数选取的综合比较分析方法及典型堆积体抗剪参数参考值,并分析和探讨了堆积体强度特征。(5)在总结不同成因的大型堆积体变形破坏特征的基础上,首次提出了“开挖牵引型、加载推移型、库水作用型、暴雨渗透型、地震促发型、洪水冲刷型及综合诱导型”等七种大型堆积体诱发变形失稳的基本模式,并结合典型工程实例,提出了堆积体变形空间效应与时间效应。(6)对堆积体稳定性影响因数进行分析,总结提出了堆积体具有天然稳定性、潜在不稳定性、动态稳定性及空间稳定性特征;结合工程实例,提出了堆积体工程边坡、库岸再造及地基稳定的安全控制标准及分析评价方法;同时,结合大型堆积体地质灾害成灾特点,探讨了大型堆积体地质灾害综合防治措施。本文研究成果不仅对西南山区河谷水利水电工程、公路工程、铁路工程及矿山工程建设中大型堆积体的勘察、设计、治理与灾害预防具有重要指导意义,而且对西北乃至东南亚目前正在开发或即将开工建设的大量类似工程也具有参考或借鉴价值。本文的研究不仅具有理论研究意义,更具有广泛的实践指导意义。

二、大朝山水电站大坝坝基渗流监测及初期资料分析(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、大朝山水电站大坝坝基渗流监测及初期资料分析(论文提纲范文)

(1)黄登水电站坝基渗流特性研究及实践(论文提纲范文)

1 工程概况
2 坝基渗流特性分析
    2.1 计算模型
    2.2 渗控成果分析
        2.2.1 渗流场分析
        2.2.2 坝基扬压力分布
        2.2.3 坝基主防渗帷幕深度对渗流场的影响
        2.2.4 两岸帷幕长度对渗流场影响分析
        2.2.5 排水孔幕间距对渗流场的影响
        2.2.6 排水孔幕失效分析
3 坝基渗控系统设计
    3.1 坝基防渗帷幕
    3.2 坝基排水
4 渗流监测
    4.1 坝基
    4.2 坝体
    4.3 渗流量
5 结语

(2)混凝土面板堆石坝面板裂缝统计分析及渗流数值模拟研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 研究背景及意义
    1.2 国内外研究进展
        1.2.1 面板开裂研究
        1.2.2 渗流计算方法研究
        1.2.3 渗流数值模拟研究
    1.3 本文研究目的及内容
2 面板堆石坝面板裂缝统计分析及渗流控制
    2.1 面板裂缝原因分析
    2.2 面板裂缝案例统计
    2.3 面板开裂渗流控制
        2.3.1 渗流控制要求及方法
        2.3.2 渗流控制基本措施
        2.3.3 面板裂缝处理方法
        2.3.4 面板抗裂措施
    2.4 本章小结
3 面板堆石坝面板裂缝渗流计算方法研究
    3.1 渗流计算的基本理论
    3.2 面板裂缝等效连续介质方法
    3.3 工程算例
        3.3.1 有限元模型
        3.3.2 边界条件
        3.3.3 计算工况
        3.3.4 区块大小
    3.4 计算结果对比分析
        3.4.1 计算结果
        3.4.2 确定区块
        3.4.3 对比分析
    3.5 本章小结
4 基于等效连续介质方法面板堆石坝渗流及影响因素分析
    4.1 计算模型
    4.2 计算方案
    4.3 正常工况渗流分析
    4.4 面板不同位置开裂渗流分析
        4.4.1 计算结果
        4.4.2 对比分析
    4.5 防渗帷幕不同程度劣化渗流分析
        4.5.1 计算结果
        4.5.2 对比分析
    4.6 本章小结
5 结论与展望
    5.1 结论
    5.2 展望
参考文献
攻读学位期间主要研究成果
致谢

(3)基于POT和改进D-S证据理论的土石坝健康诊断方法研究(论文提纲范文)

摘要
Abstract
1.绪论
    1.1 研究背景与意义
    1.2 国内外研究进展
        1.2.1 大坝健康影响因素与诊断体系研究进展
        1.2.2 大坝健康诊断指标拟定研究进展
        1.2.3 大坝健康综合诊断方法研究进展
    1.3 问题的提出
    1.4 研究内容
    1.5 技术路线
2.土石坝健康影响因素与诊断体系
    2.1 引言
    2.2 土石坝健康影响因素挖掘
    2.3 土石坝健康诊断体系构建
        2.3.1 诊断元素选择原则
        2.3.2 诊断体系构建
    2.4 本章小结
3.土石坝健康影响因素重要性分析方法
    3.1 引言
    3.2 理论方法
        3.2.1 模糊最优最劣法
        3.2.2 熵权法
        3.2.3 级差最大化法
    3.3 模型构建
    3.4 实例应用
        3.4.1 工程概况
        3.4.2 健康诊断元素重要性评价体系构建
        3.4.3 健康影响因素赋权
        3.4.4 比较与分析
    3.5 本章小结
4.基于POT模型的土石坝健康诊断指标拟定方法
    4.1 引言
    4.2 健康评语集设计
    4.3 理论方法
        4.3.1 POT模型
        4.3.2 等区间划分法
    4.4 模型构建
    4.5 实例应用
        4.5.1 工程概况
        4.5.2 监测数据的厚尾性分析
        4.5.3 基于POT模型的诊断指标拟定
        4.5.4 比对分析
    4.6 本章小结
5.基于改进D-S证据理论的土石坝健康综合诊断方法
    5.1 引言
    5.2 理论方法
        5.2.1 D-S证据理论
        5.2.2 可拓云理论
    5.3 模型构建
    5.4 实例应用
        5.4.1 工程概况
        5.4.2 健康综合诊断
        5.4.3 对比分析
    5.5 本章小结
6.总结与展望
    6.1 总结
    6.2 展望
致谢
参考文献
攻读学位期间主要研究成果

(4)遗传算法在土石坝渗流监控模型应用研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 选题背景及意义
    1.2 国内外研究现状
        1.2.1 土石坝渗流监控模型研究现状
        1.2.2 遗传算法优化模型研究现状
        1.2.3 监控指标研究现状
    1.3 研究内容及技术路线
        1.3.1 本文主要研究内容
        1.3.2 技术路线
2 遗传算法优化下的监控模型
    2.1 遗传算法原理
        2.1.1 遗传编码
        2.1.2 适应函数
        2.1.3 遗传操作
    2.2 遗传算法优化下的偏最小二乘法
        2.2.1 偏最小二乘法统计模型的优点及原理方法
        2.2.2 遗传算法优化统计模型
    2.3 遗传算法优化下的BP人工神经网络模型
        2.3.1 BP人工神经网络模型的结构
        2.3.2 数据归一化和反归一化
        2.3.3 隐含层节点个数的确定
        2.3.4 遗传算法优化BP神经网络模型原理方法
    2.4 模型预测评价指标
    2.5 本章小结
3 土石坝测压管水位监控模型遗传算法优化
    3.1 测压管水位监控模型的建立与遗传算法优化过程
        3.1.1 测压管水位统计模型的建立与优化过程
        3.1.2 测压管水位BP神经网络模型的建立与优化过程
    3.2 土石坝测压管水位统计模型遗传算法优化
        3.2.1 工程概况
        3.2.2 因子选择和统计模型的初步建立
        3.2.3 因子参数回归估计
        3.2.4 遗传算法优化统计模型
        3.2.5 遗传算法优化统计模型前后对比分析
    3.3 土石坝测压管水位BP神经网络模型遗传算法优化
        3.3.1 模型训练样本和测试样本的选择
        3.3.2 BP神经网络结构的确定
        3.3.3 BP神经网络训练
        3.3.4 遗传算法优化BP神经网络模型
        3.3.5 遗传算法优化BP神经网络模型前后对比分析
    3.4 测压管水位统计模型与BP神经网络模型对比分析
    3.5 测压管水位监控指标
    3.6 本章小结
4 土石坝渗流量监控模型遗传算法优化
    4.1 渗流量监控模型的建立与遗传算法优化过程
        4.1.1 渗流量统计模型的建立与优化过程
        4.1.2 渗流量BP神经网络模型的建立与优化过程
    4.2 土石坝渗流量统计模型遗传算法优化
        4.2.1 渗流量资料分析
        4.2.2 因子选择和统计模型的初步建立
        4.2.3 因子参数回归估计
        4.2.4 遗传算法优化统计模型
        4.2.5 遗传算法优化统计模型前后对比分析
    4.3 土石坝渗流量BP神经网络模型遗传算法优化
        4.3.1 模型训练样本和测试样本的选择
        4.3.2 网络结构和参数的确定
        4.3.3 BP神经网络训练
        4.3.4 遗传算法优化BP神经网络模型
        4.3.5 遗传算法优化BP神经网络模型前后对比分析
    4.4 渗流量统计模型与BP神经网络模型对比分析
    4.5 渗流量监控指标
    4.6 本章小结
5 总结与展望
    5.1 总结
    5.2 展望
参考文献
致谢
作者简介

(5)如美水电站坝基岩体渗流及防渗范围分析研究(论文提纲范文)

摘要
Abstract
第1章 前言
    1.1 工程概况
    1.2 选题依据及研究意义
    1.3 国内外研究现状
        1.3.1 裂隙岩体渗透性研究现状
        1.3.2 岩体渗透结构研究现状
        1.3.3 坝基渗漏与防渗的研究现状
        1.3.4 地下水数值模拟研究现状
    1.4 研究内容、研究思路及技术路线
        1.4.1 主要研究内容
        1.4.2 研究思路及技术路线
第2章 坝址区工程地质环境条件
    2.1 自然地理
        2.1.1 地理位置
        2.1.2 气象水文
    2.2 区域地质特征
        2.2.1 区域地貌
        2.2.2 区域构造及地震
    2.3 坝址区工程地质条件
        2.3.1 地形地貌
        2.3.2 地层岩性
        2.3.3 坝区地质构造
        2.3.4 水文地质条件
        2.3.5 物理地质现象
    2.4 小结
第3章 坝基岩体结构及渗透结构特征
    3.1 坝址区结构面规模分级
    3.2 坝址区Ⅲ级和Ⅳ级结构面发育特征
        3.2.1 Ⅲ级结构面发育特征
        3.2.2 Ⅳ级结构面发育特征
    3.3 坝址区Ⅴ级结构面发育特征
        3.3.1 左岸陡倾裂隙发育特征
        3.3.2 右岸陡倾裂隙发育特征
    3.4 坝基岩体结构特征
        3.4.1 左岸坝基岩体结构特征
        3.4.2 右岸坝基岩体结构特征
    3.5 岩体渗透结构类型及其特征
        3.5.1 岩体渗透结构类型定义
        3.5.2 如美不同卸荷带的渗透结构类型及其渗流性
    3.6 小结
第4章 坝基岩体渗透特性研究
    4.1 坝基岩体压水试验成果分析
        4.1.1 常规压水试验
        4.1.2 高压压水试验
    4.2 裂隙岩体渗透系数张量研究
        4.2.1 裂隙岩体渗透系数张量计算原理
        4.2.2 坝基岩体渗透张量计算
    4.3 渗透系数的综合选取
    4.4 小结
第5章 坝址区渗流场三维数值模拟
    5.1 计算模型的建立
        5.1.1 模型范围的确定
        5.1.2 模型介质类型及参数
        5.1.3 模型计算单元与边界条件概化
        5.1.4 模型的空间离散
    5.2 模拟方案及模型验证
        5.2.1 模拟方案
        5.2.2 模型验证
    5.3 不同工况下的模拟对比分析
        5.3.1 天然渗流场分析
        5.3.2 水库蓄水条件下渗流场分析
        5.3.3 水库蓄水+防渗帷幕工况下渗流场分析
    5.4 坝基岩体渗漏量预测与评价
    5.5 小结
第6章 坝基防渗范围分析与评价
    6.1 防渗标准的确定
    6.2 帷幕的设计要求
    6.3 如美坝基防渗帷幕范围分析
    6.4 小结
结论
致谢
参考文献
攻读学位期间取得学术成果

(6)托口水电站河湾地块渗流分析与渗控效果评价(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景及意义
    1.2 国内外研究现状
        1.2.1 岩土体渗透特性研究
        1.2.2 基于数值模拟法的水库渗漏计算
        1.2.3 渗控措施效果评价
    1.3 研究内容及技术路线
        1.2.1 研究内容
        1.2.2 技术路线
第二章 托口水电站河湾地块水文地质条件分析
    2.1 工程概况
    2.2 基本工程地质条件
        2.2.1 河湾地块地形地貌
        2.2.2 河湾地块地层岩性
        2.2.3 河湾地块地质构造
        2.2.4 岩溶发育特征
    2.3 水文地质条件分析
        2.3.1 地下水类型与地下水位
        2.3.2 岩体透水性分区与参数取值
    2.4 防渗处理方案
        2.4.1 河湾地块主坝侧防渗布置
        2.4.2 河湾地块副坝侧防渗布置
    2.5 本章小结
第三章 河湾地块渗流参数反演分析
    3.1 渗流分析基本原理
        3.1.1 控制方程
        3.1.2 稳定渗流分析模型
        3.1.3 渗流场反演分析方法
    3.2 渗流有限元模型
        3.2.1 河湾地块主坝侧三维有限元模型
        3.2.2 河湾地块副坝侧三维有限元模型
    3.3 渗流监测资料分析
        3.3.1 渗流监测设备布置
        3.3.2 主坝侧(防渗段)地下水位与渗漏量
        3.3.3 副坝侧(防渗段)地下水位与渗漏量
        3.3.4 主坝侧灌浆廊道渗漏问题
    3.4 地下水位分析
    3.5 反演成果分析
        3.5.1 反演工况
        3.5.2 河湾地块主坝侧渗流场反演分析成果
        3.5.3 河湾地块副坝侧渗流场反演分析成果
    3.6 本章小结
第四章 河湾地块三维渗流有限元分析
    4.1 河湾地块主副坝侧三维渗流场分析
        4.1.1 计算工况与边界条件
        4.1.2 三维计算结果与分析
    4.2 主坝侧廊道渗漏影响因素分析
        4.2.1 防渗帷幕渗透特性敏感性分析
        4.2.2 岩体渗透特性敏感性分析
        4.2.3 帷幕失效分析
        4.2.4 衬砌破坏分析
    4.3 渗漏区间及渗漏量预测
        4.3.1 计算工况
        4.3.2 结果分析
    4.4 本章小结
第五章 河湾地块渗控效果评价与建议
    5.1 渗流控制性能评价
        5.1.1 防渗方案复核
        5.1.2 渗控效果评价
    5.2 渗水抽排建议
        5.2.1 渗水抽排前后廊道稳定性分析
        5.2.2 渗水抽排方案建议
    5.3 防渗及监测措施建议
    5.4 本章小结
第六章 结论与展望
    6.1 结论
    6.2 展望
参考文献
致谢
附录A(攻读学位期间发表论文题目)
附录B(在校期间参与项目)

(7)龙滩碾压混凝土重力坝施工进度管理的研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 论文选题背景
    1.2 国内外碾压混凝土大坝现状分析
        1.2.1 国外已建碾压混凝土大坝现状
        1.2.2 国内已建碾压混凝土大坝现状
    1.3 国内外进度管理实践与理论现状
        1.3.1 国外进度管理的实践探索
        1.3.2 国内水电工程项目进度管理的实践探索
        1.3.3 龙滩碾压混凝土重力坝进度管理的研究
    1.4 论文主要内容和创新点
        1.4.1 论文主要内容
        1.4.2 论文创新点
第2章 大型水电项目施工进度管理的原理与方法探讨
    2.1 工程项目进度计划
        2.1.1 里程碑计划
        2.1.2 横道图(甘特图)
        2.1.3 网络计划
        2.1.4 形象进度
        2.1.5 工期优化
    2.2 工程项目进度控制
        2.2.1 进度偏差分析
        2.2.2 进度动态调整
    2.3 大型水电工程进度管理常用方法
        2.3.1 大型水电工程进度计划
        2.3.2 大型水电工程进度控制
        2.3.3 大型水电工程进度管理软件
    2.4 本章小结
第3章 龙滩碾压混凝土重力坝项目基本情况
    3.1 工程概况
        3.1.1 枢纽布置
        3.1.2 大坝建筑物布置
        3.1.3 坝体材料分区
    3.2 合同项目及主要工程量
        3.2.1 工程项目和工作内容
        3.2.2 主要工程量
    3.3 施工导流、施工特点、施工关键线路及难点
        3.3.1 施工导流
        3.3.2 施工特点
        3.3.3 施工关键线路及难点
    3.4 本章小结
第4章 龙滩碾压混凝土重力坝进度计划编制的研究
    4.1 施工总体进度计划的编制依据
        4.1.1 合同控制性工期
        4.1.2 合同交面时间
        4.1.3 导流渡汛方案
        4.1.4 业主提供的主要条件
        4.1.5 主要施工方案
    4.2 总体施工程序、网络计划图及关键线路
        4.2.1 总体施工程序
        4.2.2 网络计划图及关键线路
    4.3 施工总体进度计划的编制
        4.3.1 工作分解结构(Work Breakdown Structure)
        4.3.2 工程总体进度计划P3 横道网络图
    4.4 龙滩大坝各工程项目具体进度计划的工期分析
        4.4.1 施工准备工程
        4.4.2 混凝土系统建设工程
        4.4.3 上下游土石围堰工程
        4.4.4 上下游碾压混凝土围堰工程
        4.4.5 大坝基坑开挖支护和坝基处理工程
        4.4.6 大坝主体工程
        4.4.7 导流工程及其他项目工程
    4.5 总进度计划的主要项目施工强度及资源计划分析
        4.5.1 总进度计划主要项目年、季施工强度分析
        4.5.2 土石方明挖月强度分析及资源计划分析
        4.5.3 左岸进水口大坝碾压、常态混凝土月强度及资源计划分析
        4.5.4 右岸大坝碾压、常态砼月强度及资源计划分析
    4.6 碾压混凝土项目工期分析
        4.6.1 单元工程划分
        4.6.2 单元工程工序工期分析
        4.6.3 碾压混凝土项目工期分析
    4.7 本章小结
第5章 龙滩碾压混凝土重力坝进度控制的研究
    5.1 进度计划控制
        5.1.1 进度计划控制体系
        5.1.2 进度计划控制流程
        5.1.3 滚动计划与控制方法
    5.2 进度控制施工管理组织体系
    5.3 施工资源
        5.3.1 系统工程理论,高效配置施工资源
        5.3.2 本工程分年度所需主要施工资源
    5.4 进度控制信息管理
    5.5 进度偏差分析
        5.5.1 进度偏差分析主要方法
        5.5.2 用生产调度周计划,分阶段动态进行偏差分析
    5.6 进度动态调整
        5.6.1 改变后续工作间的逻辑关系
        5.6.2 缩短关键线路持续时间
    5.7 本章小结
第6章 提前下闸蓄水进度调整、总进度管理效果分析
    6.1 提前下闸蓄水进度调整
        6.1.1 进度调整计划编制
        6.1.2 提前下闸蓄水进度计划控制
    6.2 龙滩碾压混凝土重力坝工程总体进度管理效果
        6.2.1 总体满足合同目标及业主提前下闸蓄水、提前发电要求
        6.2.2 各阶段合同工期节点工程照片
        6.2.3 龙滩碾压混凝土重力坝工程进度管理的基本经验
    6.3 本章小结
结论与展望
参考文献
致谢
附录 A(攻读学位期间所发表的学术论文)
附录 B(附录图4-1~附录图4-13)

(8)高拱坝坝基软弱破碎带处置技术研究 ——以锦屏一级水电站坝基f5断层处置为例(论文提纲范文)

摘要
Abstract
第1章 引言
    1.1 选题依据及研究意义
    1.2 国内外研究历史及现状
        1.2.1 高拱坝建设及拱坝稳定性研究现状
        1.2.2 断层等软弱破碎带的灌浆处置
        1.2.3 断层等软弱破碎带的高压冲洗置换处理
        1.2.4 断层等软弱破碎带的锚固处置
    1.3 论文研究内容及技术路线
        1.3.1 主要研究内容
        1.3.2 研究的技术路线
    1.4 论文主要创新点
第2章 f5断层工程地质特征及其影响分析
    2.1 坝址基本工程地质条件
        2.1.1 地质构造
        2.1.2 地形地貌
        2.1.3 地层岩性
        2.1.4 坝基岩体质量分级
    2.2 左岸坝基典型断层—f5断层的工程地质特征
        2.2.1 f5断层空间展布
        2.2.2 f5断层及其影响工程地质特征
        2.2.3 f5断层及其周围岩体分区
    2.3 坝基f5断层处置方案初步分析
        2.3.1 左岸坝基f5断层的灌浆处置方案
        2.3.2 左岸坝基f5断层的高压对穿冲洗置换方案
        2.3.3 左岸坝基f5断层的预应力锚固方案
    2.4 本章小结
第3章 断层带灌浆材料性能及浆液扩散理论研究
    3.1 灌浆材料性能及试验
        3.1.1 浆液的流变性试验
        3.1.2 浆液的可灌性研究
        3.1.3 浆液的塑性强度和可注期
    3.2 低渗透带水泥-化学复合灌浆技术
        3.2.1 单裂隙浆液扩散理论
        3.2.2 液体的浸润理论
        3.2.3 化灌材料试验
    3.3 粘度时变性灌浆材料的灌浆模拟试验研究
        3.3.1 粘度时变性浆液性能特点
        3.3.2 粘度时变性灌浆材料模拟试验
    3.4 灌浆材料工程适宜性研究
        3.4.1 宽大裂缝灌浆材料及配比
        3.4.2 断层破碎带补充加密灌浆材料及配比
        3.4.3 软弱低渗透破碎带灌浆材料及配比
        3.4.4 断层影响区微细裂隙灌浆材料及配比
    3.5 断层破碎带灌浆技术
        3.5.1 断层破碎带灌浆处理特点
        3.5.2 断层破碎带灌浆处理设计
    3.6 坝基f5断层破碎带灌浆效果评价
        3.6.1 防渗帷幕
        3.6.2 软弱岩带
    3.7 本章小结
第4章 高压对穿冲洗碎岩机理及置换效果分析
    4.1 高压对穿冲洗置换方案
    4.2 高压对穿冲洗数值模拟试验
        4.2.1 数值模拟设计
        4.2.2 材料参数取值
        4.2.3 数值计算流程
    4.3 高压对冲数值结果及分析
        4.3.1 运动趋势分析
        4.3.2 应力特征分析
        4.3.3 位移特征分析
    4.4 本章小结
第5章 断层影响带卸荷岩体的锚固变形机制研究
    5.1 卸荷岩体力相似材料制作
        5.1.1 卸荷岩体力学参数及相似比
        5.1.2 岩石相似材料配比试验
        5.1.3 岩体相似材料力学试验
    5.2 卸荷岩体锚固物理模型试验
        5.2.1 工程背景及试验目的
        5.2.2 单锚试验设计
        5.2.3 群锚试验设计
        5.2.4 数据采集及测量设备
        5.2.5 压力分散型锚索模型制作
    5.3 物理模型试验结果及分析
        5.3.1 单锚试验结果及分析
        5.3.2 群锚试验结果及分析
        5.3.3 试验分析小结
    5.4 单锚及群锚数值模拟试验
        5.4.1 单锚数值模拟分析
        5.4.2 双锚数值模拟分析
        5.4.3 群锚数值模拟分析
    5.5 本章小结
第6章 处置效果监测反馈与分析评价
    6.1 坝基f5断层固结灌浆处置效果评价
        6.1.1 固结灌浆成果统计分析
        6.1.2 固结灌浆透水率检查结果分析及评价
        6.1.3 固结灌浆物探检查成果分析及评价
    6.2 坝基f5断层帷幕灌浆处置效果及评价
        6.2.1 帷幕灌浆成果资料统计及分析
        6.2.2 帷幕灌浆透水率检查成果分析评价
        6.2.3 帷幕灌浆物探检查成果分析评价
    6.3 高压对穿冲洗置换回填成果检测及分析
        6.3.1 高压对穿冲洗区域回填混凝土后测试孔和检查孔透水率分析
        6.3.2 高压对穿冲洗区域检查孔岩芯分析
        6.3.3 高压对穿冲洗物探检测
    6.4 坝基f5断层综合处置后岸坡稳定性监测及分析
        6.4.1 岸坡坡面的变形观测
        6.4.2 岸坡锚固区的变形、应力监测
        6.4.3 坝基断层处置洞室变形监测及分析
    6.5 坝基f5断层处置后的渗控监测及分析
        6.5.1 坝基渗透压力
        6.5.2 灌浆平洞和排水洞排水渗透压力
        6.5.3 坝体和坝基渗流量
    6.6 本章小结
第7章 结论及展望
    7.1 结论
    7.2 研究展望
致谢
参考文献
攻读博士学位期间获得的学术成果

(9)基于微震监测的大岗山高拱坝坝踵蓄水初期变形机制研究(论文提纲范文)

1 引言
2 大岗山水电站高拱坝概况
    2.1 工程概况
    2.2 工程地质条件
    2.3 蓄水过程
3 坝踵微震监测系统
    3.1 监测原理
    3.2 坝踵微震系统构建
    3.3 波速优化
4 蓄水初期微震时空分布特征
    4.1 微震时间分布规律
    4.2 微震空间分布规律
5 蓄水初期坝踵变形机制分析
    5.1 坝踵微震变形转移
    5.2 基础廊道拱顶裂缝变形分析
6 结论

(10)西南地区深切河谷大型堆积体工程地质研究(论文提纲范文)

摘要
Abstract
第1章 前言
    1.1 选题依据及研究意义
    1.2 国内外研究现状
        1.2.1 堆积体成因与分类
        1.2.2 堆积体综合勘察技术
        1.2.3 堆积体物理力学特性研究
        1.2.4 堆积体变形破坏模式
        1.2.5 堆积体稳定性分析
        1.2.6 堆积体地质灾害防治研究
    1.3 研究内容及技术路线
        1.3.1 研究内容
        1.3.2 技术路线
    1.4 取得的主要成果
第2章 大型堆积体工程地质分类
    2.1 西南地质环境特征
    2.2 堆积体要素分类
        2.2.1 规模大小分类
        2.2.2 形成时间分类
        2.2.3 成因类型分类
        2.2.4 结构特征分类
        2.2.5 物质组成分类
        2.2.6 稳定状态分类
        2.2.7 堆积地点分类
        2.2.8 动力成因分类
        2.2.9 动力地质作用类型分类
    2.3 工程地质分类
        2.3.1 按粒度组成分类
        2.3.2 按结构特征分类
        2.3.3 按空间形态特征分类
    2.4 工程地质综合分类
第3章 大型堆积体成因机制分析
    3.1 堆积体空间发育分布特征
        3.1.1 河谷堆积
        3.1.2 断裂活动带堆积
        3.1.3 特殊岩性组合堆积
    3.2 大型堆积体成因机制分析
        3.2.1 动力地质作用分析
        3.2.2 大型堆积体综合成因分析
        3.2.3 大型堆积体时空演化特征
    3.3 典型堆积体成因机制分析
        3.3.1 河流深厚覆盖层(堆积体)
        3.3.2 大型冰水堆积体
        3.3.3 大型混合堆积体
第4章 大型堆积体工程地质勘察与试验研究
    4.1 地质勘察内容与要求
        4.1.1 不同设计阶段堆积体勘察要求
        4.1.2 不同成因堆积体勘察要求
        4.1.3 不同地点堆积体勘察要求
    4.2 地质勘察技术手段与方法
        4.2.1 工程地质测绘与调查
        4.2.2 工程地质勘探
        4.2.3 工程物探
        4.2.4 3S技术
        4.2.5 综合勘察技术
    4.3 大型堆积体试验研究
        4.3.1 试验内容与要求
        4.3.2 工程实例分析
    4.4 大型堆积体工程勘察经验总结
第5章 大型堆积体工程地质特性研究
    5.1 堆积体界面特征
        5.1.1 堆积体界面形态特征
        5.1.2 堆积体界面结构特征
    5.2 堆积体物质组成与结构特征
        5.2.1 不同成因堆积体
        5.2.2 不同地点堆积体
        5.2.3 典型堆积体物质组成与结构特征
    5.3 堆积体物理力学特性
        5.3.1 物理力学特性参数
        5.3.2 堆积体渗透特性
        5.3.3 物理力学参数分析与选择
        5.3.4 工程实例分析
    5.4 堆积体强度特征
        5.4.1 堆积体强度影响因数分析
        5.4.2 堆积体剪切强度特征
        5.4.3 堆积体动力强度特征
第6章 大型堆积体稳定性分析研究
    6.1 大型堆积体变形破坏特征分析
        6.1.1 堆积体变形特征与失稳模式
        6.1.2 典型堆积体变形特征与诱发机理分析
        6.1.3 大型堆积体变形的时空效应
    6.2 大型堆积体稳定问题分析
        6.2.1 堆积体稳定性影响因素
        6.2.2 堆积体稳定性特征
        6.2.3 堆积体工程边坡稳定性分析
        6.2.4 堆积体水库岸坡稳定性分析
        6.2.5 堆积体地基稳定性分析
    6.3 大型堆积体地质灾害防治措施探讨
        6.3.1.大型堆积体地质灾害成灾特点及危害
        6.3.2 大型堆积体地质灾害防治措施
结论及建议
    (一)结论
    (二)建议
致谢
参考文献
攻读学位期间取得学术成果

四、大朝山水电站大坝坝基渗流监测及初期资料分析(论文参考文献)

  • [1]黄登水电站坝基渗流特性研究及实践[J]. 字林,洪建辉,李浪. 云南水力发电, 2021(11)
  • [2]混凝土面板堆石坝面板裂缝统计分析及渗流数值模拟研究[D]. 高珊. 西安理工大学, 2021(01)
  • [3]基于POT和改进D-S证据理论的土石坝健康诊断方法研究[D]. 张瑜潇. 西安理工大学, 2021(01)
  • [4]遗传算法在土石坝渗流监控模型应用研究[D]. 黄振东. 南昌工程学院, 2020(06)
  • [5]如美水电站坝基岩体渗流及防渗范围分析研究[D]. 钟正恒. 成都理工大学, 2020(04)
  • [6]托口水电站河湾地块渗流分析与渗控效果评价[D]. 戴宏基. 长沙理工大学, 2020(07)
  • [7]龙滩碾压混凝土重力坝施工进度管理的研究[D]. 刘武. 湖南大学, 2019(02)
  • [8]高拱坝坝基软弱破碎带处置技术研究 ——以锦屏一级水电站坝基f5断层处置为例[D]. 李正兵. 成都理工大学, 2018(02)
  • [9]基于微震监测的大岗山高拱坝坝踵蓄水初期变形机制研究[J]. 马克,金峰,唐春安,吕鹏飞,庄端阳. 岩石力学与工程学报, 2017(05)
  • [10]西南地区深切河谷大型堆积体工程地质研究[D]. 王自高. 成都理工大学, 2015(04)

标签:;  ;  

大朝山水电站坝基渗流监测及初步数据分析
下载Doc文档

猜你喜欢